|
|
|
USA Department of Energy graph |
---|
Why we should use pumped hydro to store large amounts of energy?
How does pumped hydro differ from conventional hydro power?Conventional hydro only allows for water to flow out of a high level storage through turbines to generate power. It cannot pump in the other direction when electricity is cheap. It relies on rain to fill the storage.
Building a pumped hydro system results in much less environmental damage than
building conventional hydro because the storages can be much smaller and
pumped hydro can be recharged as often as needed.
Energy efficiencyAccording to Wikipedia pumped hydro has a round-trip energy efficiency of between 70%-80%. That is, for each pumping-generating cycle, between 70% and 80% of the energy used in pumping is recovered in generation.What are the alternatives to pumped hydro?Batteries (electro-chemical)Batteries are the obvious alternative. The Tesla Big Battery (more formally called the Hornsdale Power Reserve) at Hornsdale in Mid-North South Australia had a lot of publicity as the biggest battery in the world in late 2017: it stores 129 MWh of energy (it can release this at a maximum power of 100 MW).By far the greatest part of the materials required to build a pumped hydro system have a simple chemistry and are easily disposed of, or recycled, at the end of their useful lives: steel, concrete, earth, rock. Lithium-based batteries, on the other hand, have complex chemistries and are difficult to recycle fully. The life of a battery varies depending on the type, but is likely to be a few years. On the other hand the main components of a pumped hydro facility will last many years (turbines), decades (tunnels, pipelines), even centuries (storages). Flywheels (electro mechanical)These can be used for storing very limited amounts of energy with a very rapid response time.
Hydrogen storageSeems to have great potential for medium- to long-term storage of large amounts of energy, but at the present it is of questionable economic viability. I have written more on hydrogen and energy and power to (hydrogen) gas in Australia elsewhere in these pages.Thermal storageMolten salt is often used as the working fluid in a solar thermal power station; it can be stored efficiently for a period of several hours up to a few days. Well and good for a solar thermal power station, however, using electricity to heat something like salt and then using the hot salt to produce steam and generate electricity is very inefficient.Water supply matters
In What is the real cost of water?, written 2007/09/14 I noted that the cost of water in Australia varied from $0.0013/kL ($1.30/ML) in the Murrumbidgee Irrigation Area to around $1/kL for a domestic consumer in South Australia (the cost to domestic consumers in SA had increased to around $3/kL by 2017). Most of the variation is due to the costs involved in getting the water to where it is required. In Reducing evaporation losses from farm dams I discused the large evaporation losses from open water storages and some of the methods used to reduce them. The Australian Bureau of Meteorology records an annual evaporation rate at Port Augusta, South Australia, of around two metres. In his study of pumped hydro sites Andrew Blakers states that the typical area of a pumped hydro dam will be between 10 and 100 hectares, so at two metres evaporation per annum that amounts to between 200 ML and 2 GL lost to evaporation each year. Blakers has estimated that if South Australia was to build enough pumped hydro energy storage to allow 100% renewable energy less than 1% of the state's water extraction from the Murray would be required for topping-up. One way of reducing evaporation losses would be by floating rafts of solar PV (photovoltaic) panels on the dams, giving the advantage of generating power at the same time. This has been done on a very small scale (photo on the right), and proposed on a much larger scale, at Jamestown in South Australia. There would be challenges relating to the frequent filling and emptying of the dams beneath the floating panels. Solar panels have been installed on a bigger scale, a megawatt, over irrigation channels in Gujarat, India in a project expected to reduce evaporation by 34 ML per year. Forty megawatts of floating solar panels have also been installed in an area flooded due to coal mining subsidence in China.
LinkABC 4 Corners program on the illegal extraction of water from the Murray-Darling system, 2017/07/24.
Pumped hydro using seawaterUsing seawater for pumped hydro in the drier parts of Australia has obvious advantages over installations using fresh water. Seawater is plentiful and cheap, there is no need to build a lower storage, it is available in lots of places where there are nearby high hills suitable for building the upper storage – coastal cliffs.It is more challenging in that corrosion and fouling problems would have to be guarded against. It concerns me from an environmental ground. Anti-fouling chemicals would have to be used to stop organisms from attaching themselves to the turbines and pipes. Since the water would be periodically taken from the sea and put back into the sea it seems that the chemicals would be released into the open sea with possible toxic impacts. Confining the chemicals in a lower storage so that they did not impact sea life removes the financial advantage of not having the lower storage. So far as I know seawater pumped hydro has only been done once with a high head, as would be used in Australia; a trial project at a Okinawa, Japan. Links: seawater pumped hydroScience Direct; Seawater pumped-storage power plant in Okinawa island, Japan; Akitaka Hiratsuka, Takashi Arai, Tsukasa YoshimuraWikipedia; Okinawa Yanbaru Seawater Pumped Storage Power Station Links: seawater pumped hydro in South AustraliaEnergy Australia: Consortium assessing pumped hydro storage plant in Spencer Gulf, South AustraliaArticle on the Spencer Gulf project by Simon Holmes a Court, 2017/09/29, in RenewEconomy. Simon goes into detail in the figures, including financial figures as well as storage volumes and power output and storage. |
|
Related pagesOn this site...Relating specifically to pumped hydro...Snowy 2 or not; is the proposed Snowy 2 pumped hydro scheme the best available way of spending $4 billion?Energy, ethics, climate change...
Base load power: the facts Batteries or pumped hydro? Climate change Climate change disasters and the Australian government's actions Coal seam gas: an environmental disaster End of coal Energy from falling water Glossary of technical terms relating to wind power Greatest crime in history How should Australia generate its electricity? Impressive renewable energy developments in Australia Killer coal Mid-North South Australia, leading the nation in renewable energy Northern SA's renewables Major threatened disasters compared Nuclear power; how does it stack up? Reducing evaporation losses from farm dams South Australia's success with renewable power Sustainable energy, including more discussion on pumped-hydro. Turnbull Australian Government What is the real cost of water? Why accept climate science? Why use nuclear power? Wind power in Australia Elsewhere on the Internet...A sinkhole, toxic gas and the $2 billion mistake behind Snowy 2.0's blowout; ABC Four Corners, 2023/10/23Snowy Hydro 2.0: More Expensive Than Battery Storage; Solar Quotes Blog, 2021/03/22 Australian National University group under Professor Andrew Blakers, Dr Matthew Stocks and Bin Lu identified 180 sites in South Australia, 5000 sites in Queensland, Tasmania, the Canberra district and near Alice Springs and 22,000 sites around Australia, all in mid 2017. They estimated that 400 ha of water storage would be required for SA to reach 100% renewable power; water top-up requirements were estimated to be less than 1% of SA's extraction from the Murray River. These researchers were awarded the prestigious Eureka Science Prize for this work in August 2018. PHES for SA ASAP; Pumped hydro energy storage for South Australia as soon as possible on Facebook The Conversation; Want energy storage? Here are 22,000 sites for pumped hydro across Australia; by Andrew Blakers, Bin Lu and Matthew Stocks Energy Storage Association: Pumped Hydroelectric Storage Is South Australia taking the lead in pumped hydro in Australia with the government announcing investments in four projects in February 2018? For more information see Energy Source and Distribution News, 2018/02/09. Wikipedia: Pumped storage hydroelectricity Pumped hydro using seawater in SAEnergy Australia: Consortium assessing pumped hydro storage plant in South Australia (using sea water)Renew Economy: South Australia leads again as saltwater pumped hydro storage takes shape; By Simon Holmes a Court; 2017/09/29 |
|